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Abstract 

Both multiple objectives and multiple hierarchies minimum cost flow problems with fuzzy costs and fuzzy capacities 
in the arcs are investigated. To reduce the complexity, a possibility programming is used to handle the vagueness in the 
parameters. Fuzzy approach can considerably simplify the problem and thus a fairly general multi-level problem can be 
solved reasonably easily in spite of the fact that the multi-level problem is NP-hard and very difficult to solve. Several 
numerical examples are considered to illustrate the approach. ~) 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Minimum cost flow (MCF) problem is a general form of the network flow problem whose aim is to find 
the least cost of the shipment of a commodity through a capacitated network in order to satisfy demands 
at certain nodes from available supplies at other nodes. Because it represents a general form of the network 
flow, the results from the study of the MCF problem can be applied to many other network problems such as 
transportation, maximum flow, assignment, shortest path, and trans-shipment problems. Furthermore, the results 
from the study of the MCF problems frequently offer a clue or a lower bound to the more complicated network 
flow problems. Therefore, the MCF problem plays a crucial role in the understanding of network flows. The 
MCF problem is also very practical, it has been used to solve several real-world applicational problems such 
as multi-stage production inventory planning, mold allocation, nurse scheduling, project assignment, faculty- 
course assignment, and automobile routing [1]. 

In actual practice, the costs and the capacities of  the network are generally vague or uncertain. Fuzzy set 
theory appears to be ideally suited to solve such vague aspects. In addition to apply the fiazzy approach to 
the basic MCF problem, we also extended the approach to more practical problems where the system has 
a multiple objectives and multiple hierarchy levels. To reduce the complexity of the problem, we used the 
possibility of  linear programming to handle the vagueness of the parameters and the traditional max-min 
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optimization approach to handle the multi-level aspects. The former uses the results of Negi and Lee [16, 
17] and the latter uses the development of multi-level programming due to Shih et al. [19]. Another problem 
considered is the use of compensatory operations in obtaining the optimum. Each approach is illustrated by a 
numerical example. 

Many investigations have been carried out to solve the multi-level programming problem. Ruefli [18] 
approached this problem by the use of goal decomposition. More systematic approaches were carried out by 
Bard [2], Ben-Ayed et al. [3], and Bialas and coworkers [4, 5]. The general multi-level programming problem 
has been shown to be non-convex and NP-hard. The only effective numerical approach to solve large practical 
problems appears to be the fuzzy approach proposed by Shih et al. [19]. 

2. Fuzzy minimum cost flow problem 

Let G(N,A) be a directed network with a cost c/j and a capacity of upper bound u,j and lower bound 
l• associated with every arc ( i , j )EA.  We also let each node i E N  possess a number of resources b(i), 
which indicates its supply, demand, or transient node depending on whether b(i) > O, b(i) < 0 or b(i)= O, 
respectively. The minimum cost flow (MCF) problem can be formulated as follows: 

Min f ( x ) =  E cSij xij 
(i,j)EA 

s.t. E x i j -  E xji=b(i), 'qiEN, 
{j: (i,j)ca} {j: (j,i)cA} (la) 

lij<~xij<~uij, V( i , j )cA,  (lb) 

x/j ~> 0 and integer, V(i,j) E A. (lc) 

The objective is to minimize the total cost. Constraint (la) represents the conservation of flows and con- 
straint (lb) is the capacity constraint for each arch. In general, the MCF problem also has some additional 
assumptions such as: (a) supplies, demands, and capacities must be integers; (b) the network is directed; (c) 
the supply/demand at each node satisfies the condition ~ b(i)= 0; and (d) the MCF problem has a feasible 
solution. Obviously, the MCF problem reduces to the maximum flow problem if the objective is maximiza- 
tion, constraint (lb) is removed, and all the flow cost c/j = 1, Vi and j .  Transportation problem results if 
the network is bipartite and all the arcs are directed from source to sink without any capacity restriction. 

In actual practice, both the capacity constraints and the cost parameter are vague and can be considered 
fuzzy and thus the fuzzy MCF problem can be represented by 

Min f ( x ) =  E c~ x,j 
(i,j)cA 

s.t. E xij - E xji = b(i), 'qi E N, 
{j: (i,j)Ca} {j: (j,i)cA} 

~j~xo.<~i j, V(i , j)EA, 

xij >>. 0 and integer, V(i,j) E A, (2) 

where &7, l'/J, and ~/j represent the fuzzy cost, fuzzy lower bound, and fuzzy upper bound of each arc, 
respectively. Trapezoidal fuzzy numbers will be used in this paper. 
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2.1. The possibility approach 

Using the concept of possibility proposed by Zadeh, Luhandjula [15] and Buckley [6, 7] proposed the 
possibility programming. The formulation of Beckley results in nonlinear programming problems. Negi [16, 
17] reformulated the approach of Buckley by the use of trapezoidal fuzzy numbers and reduced the problem 
into a fuzzy linear programming problem. We shall follow the formulation of Negi with some modifications 
to reduce the number of constraints. Possibility linear programming can be represented as 

Max/Min Z = ? T  x 

s.t. Aix  <<, (or >~)/~i, Vi, 

x>~0, (3) 

where c=(cl ,c2, . . . ,cn),  /ii = (6i1,~ii2 . . . . .  8in) and gj,6ij and/~i are the possibilistic variables, Vi and j. 
By assuming exceedance possibility for eomparison purposes [9] and by assuming that the decision maker 

has decided on a cut-off value for ~, the above possibility programming problem, equation (3), can be reduced 
to the following crisp linear programming problem [17]: 

Max f ( x )  

s.t.  61,62 . . . . .  6m, 02 ~>c~, 

Z c T 3 x j ~  f ~ Z c T 4 x j ,  
J J 

X~ >10, Vj, 

b i s<~Za~2x j ,  bi4 >~y~'a~l~j, Vi, 
J J 

Vi, 6l,~2,. . . ,6m,02, and ~E[0,1], 

or 

Min f ( x ) 

s.t. 61,62 . . . . .  6m, O1 ~ ~, 

bil <~ Z T aij 4x j, bi2 ~ ~ T aij 3 xj, Vi, 
J J 

Z x, <. r <. Z v,, 
J J 

61,62 . . . . .  6m, 01, and c~ E [0, 1], 

xj~>0, vj, 

where the trapezoidal fuzzy number has been assumed for ~,aij and/~i; and 

2 J J 

o.: / [z.,4x,- v.,,., 1 , 
6i = (bi4 - ril )/[(bi4 - bi3 ) -k (ri2 - ril )] 

(4) 

(5) 

with ril = ~-~j aijl xj, and ri2 = ~ j  aij2 x~ 
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According to the above expressions, the possibilistic linear programming problem can be reduced to a crisp 
linear programming problem with 3m + 3 constraints. Three constraints due to the original objective function 
and 3m constraints due to the original m constraints. In addition, if the ~ value is assumed to be unknown, 
the above possibilistic programming problem will form a nonlinear programming problem. However, a linear 
programming problem results if we assume a fixed cut-off value ~ E [0, 1]. 

In the MCF problem, Eq. (2), there exist both a lower bound l 0 and an upper bound u/j for each arc. We 

can use one trapezoidal fuzzy number to represent each arc constraint, i.e. hi = (101,102, Uijl, uij2 ), where the 
intervals [101,102 ] and [uO1,u02] represent the tolerances in the lower and upper bounds, respectively. Since 
we seek the maximum possibility 6i ~> ~, i = 1 or 2, based on the cut-off value, the left-hand side of the fuzzy 
number can be represented by 

31 = (X 0 -- 101 ) / ( / 0 2  - -  lijl ) >1 or, 

o r  

xij >1 ~(I02 - I01 ) + 101 

and the right-hand side of  the fuzzy number: 

~2 = (U02 - -X0) / (U02 -- UO1 ) ~ 0~, 

o r  

X 0 ~ U02 --  ~(U~2 - -  UO1 ). 

Thus, we can form the fuzzy interval as 

ot( lij2 - 101 ) + 101 <~ xij <~ u02 - ~(u02 - uijl ). (6) 

By using Eqs. (5) and (6), the fuzzy MCF problem, Eq. (2), can be reduced to the following crisp linear 

programming problem: 

Min f ( x )  

s.t. O1 ~> ~, 

~(102 - 101)+101 ~< xo ~< UO4--~(U/j2 -- UOI)' Vi and j, 

Z E c~J 1 xo <~ f <~ Z Z c~ 2 Xo' Vi and j,  
i j i j 

01, ~E[0,1],  

x 0/> 0 and integer, (7) 

where i = 1, 2 . . . . .  m and j = 1,2 . . . .  , n. 
The above problem can be solved by any existing mixed-integer software. If  there is no feasible solution, 

some adjustments about the ~ cut-off value will be needed. In this case, an interactive procedure with the 
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Table 1 
Parameters for a fuzzy MCF problem (with 8 nodes and 11 arcs for Example 1 ) 

163 

Node no. Supply/demand Arc no. Fuzzy cost Fuzzy capacity Note 

O 10 (9 (0.5, 1, 1.5, 2) (0, 0, 9, 11) x21 
O 20 ~ (0, 0, 0.5, 1) (0, 1, 9, 13) x23 
O 0 ~) (5, 6, 7, 8) (0, 0, 9, 11) x26 
O - 5  ~) (1.5, 2, 2.5, 3) (0, 2, 15, 16) xi4 
O 0 ~) (0.5, 1, 1.5, 2) (0, 0, 5, 9.5) x34 
O 0 (~) (3, 4, 5, 6) (0, 0, 10, 12) x35 
O --15 (~) (4, 5, 6, 7) (0, 2, 10, 14.5) )247 
O -10 (~) (1.5, 2, 2.5, 3.5) (0, 0, 20, 22) x56 

(~) (6, 7, 8, 9) (0, 0, 15, 17) x57 
(~ (7, 8, 9, 10) (0, 1, 10, 12) x68 

(8, 9, 10, 11.5) (0, 0, 15, 16.5) x~8 

+i0 

+20 +0 
® 

oy:\o ® , ~ /  ~O-10 

-5 -15 

decision maker should be adapted. Notice that in the above expression there are only 2m arc capacity con- 
straints instead o f  3m constraints as in the Negi 's  formation [16]. Moreover, these 2m arc capacity constraints 
can be reduced to m constraints if all the lower bounds are zero bounds. 

2.2. Example 1. Fuzzy minimum flow problem 

This is a fuzzy MCF problem with 8 nodes and 11 arcs. The fuzzy data are summarized in Table 1 together 
with the structure of  the network. The fuzzy MCF problem can be formulated as 

Min f l  = (0.5, 1, h5,2)x21 + (0,0,0.5, 1)x23 + (5,6,7,8)x26 + (1.5,2,2.5,3)x14 

+(0 .5 ,  1, 1.5,2)x34 + (3,4,5,6)x35 + (4,5,6,7)x47 + (1.5,2,2.5,3.5)x56 

+ (6 ,7 ,8 ,9 )x57  + (7,8,9, 10)x68 + (8,9, 10, 11.5)x78 

s.t. x14 + x 2 1  : 10, X21 +X23 +X26 = 2 0 ,  X34 +X35 - - X 2 3 : 0 ,  X47 --X14 --X34 = -- 5, 

X56 +X57 --X35 = 0 ,  X68 --X56 --X26 = 0, X78 --X47 --X57 = -- 15, --X68 - x 7 8  = - 10, 

x21E (0, 0, 9,11), X23 G (0,1, 9,13), x26E(0,0 ,9 ,11) ,  x14 E (0, 2,15,16),  x34E(0,0,5,9.5) ,  
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x35 E (0, 0,10,12), x47 E (0,2,10,14.5), x56 C (0, 0, 20, 22), x57 C (0, 0,15,17), x68 E (0,1,10,12), 

X78 E (0 ,0 ,  15, 16.5), and all xij are integers in the arcs. 

Using Eq. (7), the crisp linear programming problem can be formulated as 

Min f l  

s.t. ( f l  - 0.5x21 - 5x26 - 1.5x14 - -  0 . 5 X 3 4  - -  3X35 -- 4X47 -- 1.5x56 -- 6x57 -- 7x68 -- 8X78)/ 

-[-X26 ~- 0.5X14 -[- 0.5X34 -~- X35 ~- X47 "~- X68 -'~ X78 ) ~ ~, 

0.5X21 + 5X26 + 1.5X14 + 0.5x34 + 3x35 + 4x47 ~- 1.5x56 + 6x57 ~- 7x68 ~-- 8x78 ~ f l, 

f l  ~<x21 + 6X26 + 2X14 q- X34 q- 4X35 q- 5X47 q- 2X56 q- 7X57 -k- 8X68 + 9X78, 

X14 --X21 = 10, X21 --~X23 --~X26 = 2 0 ,  X34--~X35 --X23 = 0 ,  X47 --X14 - - X 3 4 =  -- 5, 

X56-~-X57 --X35~---0, X68 --X56 - - X 2 6 = 0 ,  X78 --X47 --X57 = -  15, --X68--X78 ~ - -  10, 

x21~<11-2~, ~<x23~<13-4~, x26~<11-2~,  2~<x14~<16--~,  x34~<9.5--4.50~, 

x35~<12-2~,  2~<x47~<14.5--4.5~, x56~<22-2c~, x57~<17-2~,  

c~<x68 ~<12 - 2~, x78 ~< 16.5 - 1.5~, 

(0.5X21 

where ~ E [0, 1] and all x/j are positive integers. 
This problem was solved using the LINGO mixed-integer soRware with a cut-off value ~ = 0.5. The nu- 

merical values for the optimal solution are f l  = 236.5, x14 = 10, x34 ~- 7, X35 ~-- 4, X47 = 12, x57 = 3, x68 = 10, 
x26 = 9 ,  x23 = 11, x56 = 1, and x78 =x21 =0 .  

3. Fuzzy multiple objective MCF problems 

For a problem with k objectives, Eq. (2) is replaced by 

Min/Max 

s.t. 

f k ( x )=  Z co .kTxij, k=  l ..... K 
(I,j)E A 

Z x i j -  Z xji=b(i)' ViEN, 
{j:(i,j)cA} {j:(j,i)cA} 

lij<<.xo <<.ui j, V(i,j)EA, 

xij >>- 0 and integer, V(i,j) E A. (8) 

w h e r e i = l  . . . . .  m; j = l  . . . . .  n. 
I f  the possibility concept is applied to handle the multiple objectives, the one which has the minimum 

objective will dominate the solution, which is obviously undesirable. Thus, some other approach is needed to 
handle the multiple objectives. We shall use the ideal solution and the anti-ideal solution concept [11, 21]. The 
ideal solution, or positive ideal solution (PIS) is obtained by solving each objective function independently 
subject to the constraints of  the original problem. The anti-ideal solution, or negative ideal solution (NIS) is 
the worst solution and, if  the objective is maximization, the problem is solved by minimizing the objective 
independently subject to the constraints of the original problem. Using this concept, the fuzzy multiple objective 
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MCF problem, Eq. (8), becomes 

Min [(f~(x +) - f k (x ) ) / ( fk (x+)  -- f~(x- ) )]  p , 

k = l  . . . . .  K 

s.t. Z x i / -  Z xji=b(i), V iEN,  
{ j : ( i , j ) ca}  {j:U,i)~A} 

l(i<~x(/<~uo., V(i , j )EA,  

x(i ~> 0 and integer, V(i, j )  E A. (9) 

where i =  1,. . . ,m; j =  1, . . . ,n.  The reference functions fk(x+) and f k ( x - )  are the ideal and anti-ideal 
solutions, respectively. Using Eqs. (7) and (9), we can obtain the following desired crisp problem for the 
fuzzy multiple objective MCF problem: 

Min 

s.t. 

h(x) = l '(X+(--f~(x))/(fk(x+)--fk(x-))]P , k = 1, . . . ,k  

c~( lij2 - lijl ) + 1~/1 <<.xij <<. uij4 - e(u,j2 - u~jl ), Vi and j, 

~ZcTIx,j~fI~ Z Z  T • ¢ij2Xij, and 01 ~>~, Vi and j, 
i i i j 

cij 3xO <~ f <~ Z Z cT4xi/'and O~ >c~,for maximization objective 
i j 

Cij2Xij, 
i j i j 

Cij4Xij, and 
i j 

x 0 >~ 0 and integer, 

and 0~/>~, Viand j, 

02 x/> ~, for maximization objective / 
J 

(1o) 

where i =  1 . . . . .  m and j - -  1 . . . . .  n. 

Example 2. A multiple objective problem 
Consider a two objectives problem with the same network flow structure as in Example 1. The first objective 

is the same as that in Example 1 and the second objective is to minimize the total passing time. The data 
used for this problem is listed in Table 2. 

We must solve four independent problems first to obtain the ideal and the anti-ideal solutions. Let f l 
and f 2  be the ideal solutions of the first and the second objectives, respectively; and let f 3  and f 4  be 
the anti-ideal solutions of the first and second objectives, respectively. The first problem is the same as in 
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Table 2 
Numerical parameters for Examples 2 and 3 

Node no. Supply/demand Arc no. 1st Objective 2nd Objective 
Fuzzy cost Fuzzy time 

O 10 ~) (0.5, 1, 1.5, 2) (2, 2, 2.5, 3) 
Q 20 (~ (0, 0, 0.5, 1) (1, 2, 2.5, 3) 
O 0 (~) (5, 6, 7, 8) (5, 6, 7, 8) 
O - 5  (~) (1.5, 2, 2.5, 3) (2, 2, 3, 3) 
O 0 (~) (0.5, 1, 1.5, 2) (1.2, 2, 2, 2.5) 
O 0 ~) (3, 4, 5, 6) (1.5, 2, 2, 2.5) 
O - 1 5  (~) (4, 5, 6, 7) (6, 7, 7.5, 8) 
O - 1 0  (~) (1.5, 2, 2.5, 3.5) (1, 2, 2.5, 3) 

(~) (6, 7, 8, 9) (1, 2, 2.5, 3) 
(7, 8, 9, 10) (2, 2.5, 3, 3.5) 

@ (8, 9, 10, 11.5) (2, 2.2, 3, 3.5) 

Example 1. 

Min 

s.t. 

X21 

~ <  

Max 

s.t. 

The remaining three problems are 

f 2  

( f 2  - 2x21 - x23 - 5x26 - 2x14 - 1.2x34 - 1.5x35 - 6x47 - x56 - x57 - 2x68 - 2x78)/  

(x23 %-x26 %- 0.8x34 + 0.5x35 %-x47 %-x56 %- 0.5x68 %- 0 .2x78) />~ ,  

2x21%-x23 %- 5x26 %- 2x14 + 1.2x34 %- 1.5x35 %- 6x47 %-x56 %-x57 + 2x68 %- 2x78 ~<f2, 

f 2  ~<2x21 + 2x23 %- 6x26 %- 2x14 %- 2x34 %- 2x35 + 7x47 %- 2x56 + 2x57 %- 2.5x68 %- 2.2x78, 

x14 --  x21 = 10, x21%- x23 %- x26 = 20,x34 %- x35 -- x23 = 0, x47 --  x14 -- x34 = -- 5, 

x56 %- x57 -- x35 = 0, x68 --  x56 --  x26 = 0,x78 --  x47 -- x57 = -- 15, --x68 -- x78 = --  10, 

~< 11 -2c~,  ~<x23~<13 - 4 ~ ,  x26~<11 - 2~,2~ 

~< x14 <~ 16 - ~, x34 ~<9.5 - 4.5~,X35 

~< 12 - 2c~, 27 ~x47 ~ 14.5 - 4.5~,X56 

~< 22 - 2~, x57 ~< 17 - 2~, 

x68 ~< 12 - 2c~, x78 ~< 16.5-1.5~,  ~ E [0, 1] and all xij are positive integers. 

f 3  

(2X21%- X23 %- 8X26 %- 3X14 -4- 2X34 + 6X35 + 7X47 %- 3.5X56 + 9X57 + 10X68 + 1 1.5X78 

- - f 3  )/0.5X21%- 0.5X23 + X26 %- 0.5X14 %- 0.5X34 %- X35 %- X47 %- X56 %- X57 %- X68 %- 1.5X78) ~> ~, 

1.5X21%- 0-5X23 %- 7X26 %- 2.5X14 %- 1.5X34 %- 5X35 %- 6X47 %- 2.5X56 %- 8X57 %- 9X68 %- 10X78 ~ < f 3 ,  

f 3  ~<2x21 + x23 + 8x26 %- 3x14 %- 2x34 %- 6x35 %- 7x47 %- 3.5x56 %- 9x57 %- 10x68 %- 11.5x78, 

x14 - x21 = 10, x21%- x23 %- x26 = 20,x34 %- x35 - x23 = 0, x47 - x14 - x34 = - 5 ,  

x56 %- x57 - x35 = 0, x68 - x56 - x26 = 0, x78 - x47 - x57 = -  15, - x 6 8 - x 7 8  = -  10, 
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Table 3 
PIS/NIS sets for Example 2 

Min f l  Min f2  Max f3  Max f 4  
(PIS) (PIS) (NIS) (NIS) 

Objective 
value 236.50 176 .60  4 0 9 . 7 5  293.25 Note 

(i) 0 0 5 5 x21 
11 11 11 11 x23 

(~) 9 9 4 4 X26 

Arc (~) I0 10 15 15 X14 

no. (~ 7 0 0 2 x34 
I~) 4 11 11 9 x35 
I~) 12 5 10 12 x47 
(~) 1 0 0 0 x56 
(~ 3 11 11 9 x57 

10 9 4 4 x68 
(~ 0 1 6 6 x78 

X 2 1  ~< 1 1 - 2 ~ ,  7~<x23~<13-4~ ,x26~<l l  - 2 5 ,  2~<x14~<16  - o~, 

x34 ~<9.5 - 4.5a, x35 ~< 12 - 2~,2c~ ~<x47 ~< 14.5 - 4.55, x56 ~<22 - 2c~, 

x 5 7 ~ < 1 7 - 2 7 ,  ~ < x 6 8 ~ < 1 2 - 2 c ~ ,  x 7 8 ~ < 1 6 . 5 -  1.55, o~E[0,1] 

and all x(i are posi t ive  integers.  

M a x  

s.t. 

f 4  

( f 4  - 3x21 - 3x23 - -  8 x 2 6  - -  3x14 -- 3x34 -- 2.5X35 - -  8 X 4 7  - -  3x57 -- 3.5x68 -- 4X78)/ 

(0.5x21 -~- 0.5x23 -~-x26 ~- 0.5x14 -t'- 3X34 q- 0.5X35 -I- 0.5x47 "q- 0.5x57 -~ 0.5x68 -]-x78 ) ~  5, 

2.5X21 + 2.5X23 + 7X26 + 2.5x14 + 3X34 + 2X35 + 7.5x47 + 2.5x56 + 2.5X57 + 3x68 + 3x78 ~<f4,  

f4<~3xzl  + 3xe3 + 8 X 2 6  "+- 3X14 + 3X34 -k- 2.5X35 + 8X47 -{- 3X56 + 3X57 + 3.5X68 "4- 4X78, 

XI4 -- X21 = 10, X21 + X23 + X26 = 20, X34 + X35 -- X23 = 0, X47 - -  X 1 4  - -  X 3 4  ~--- - - 5 ,  

X56 ~- X57 -- X35 = 0, X68 -- X56 -- X26 = 0,X78 -- X47 -- X57 = -- 15, --X68--X78 ~----- 10, 

x21 ~< 11-2c~, ~ ~<x23 ~< 13-4~ ,x26  ~< 11 - 25, 2c~ ~<x14 ~< 16 - 5, 

x34 ~< 9.5 - 4.5o~, x35 ~< 12 - 2c~, 25 ~<x47 ~< 14.5 - 4.55, x56 ~< 22 - 25, 

x 5 7 ~ < 1 7 - 2 ~ ,  ~ < x 6 8 ~ < 1 2 - 2 ~ , x 7 8 ~ < 1 6 . 5 - 1 . 5 5 ,  ~ E [ 0 , 1 ]  

and all xi/ are posi t ive  integers.  
Wi th  a cut-off  va lue  ~=0.5 ,  the opt imal  objec t ives  obtained are f l  = 236.50 (NIS) ,  f 2  = 176.60 (PIS),  

f 3  = 409.75 (anti- ideal  solut ion or  NIS) ,  f 4  = 293.25 (anti- ideal  solution or  NIS) .  The  detai led solutions are 

l isted in Table  3. No t i ce  that the max imiza t ion  p rob lem uses the r ight-hand side o f  the t rapezoidal  fuzzy 

numbers  instead o f  the lef t -hand side. 
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This problem is solved with the parameter p = 1. Using Eq. (10), we have 

Min h(x) = ( f l ( x + ) - f l ( x ) ) / ( f l ( x  ÷) - f 3 ( x -  )) + ( f 2 ( x  +) - f 2 ( x -  ) ) / ( f 2 ( x + ) - f 4 ( x  - )) 

= 0.005772f l(x) + 0.008573f2(x) - 2.87901 

s.t. ( f l - O . 5 x 2 1 - 5 x 2 6 - 1 . 5 x 1 4 - O . 5 x 3 4  - 3x35 - 4 x 4 7 - 1 . 5 x 5 6 - 6 x 5 7 - 7 x 6 8  

--8X78)/(0.5X21 ÷ X26 ÷ 0.5X14 ÷ 0.5X34 ÷ X35 ÷X47 ÷ X68 ÷ X7s) ~ (~, 

0.5X2l ÷ 5X26 ÷ 1.5X14 ÷ 0.5X34 ÷ 3x35 ÷ 4x47 ÷ 1.5x56 ÷ 6x57 ÷ 7x68 ÷ 8x78 ~<fl, 

f l  ~<xzl + 6x26 ÷ 2x14÷x34÷4x35 ÷ 5x47 ÷ 2x56 ÷ 7x57 ÷ 8x68 ÷ 9x78, 

( f 2  - 2x21 -xz3 - 5x26 -2x14 - 1.2x34 - 1.5x35 -6x47 -x56-x57 -2x68 -2x78 )/ 

(X23 ÷ X26 ÷ 0.8X34 ÷ 0.5X35 ÷ X47 ÷ X56 ÷ 0.5X68 ÷ 0.2X78) ~ ~, 

2X21 ÷ X23 ÷ 5X26 ÷2X14 ÷ 1.2X34 + 1.5X35 + 6X47 + X56 + X57 + 2X68 ÷ 2X78 ~ f 2 ,  

f 2  ~<2X21 + 2X23 ÷6X26÷2X14 ÷ 2X34 ÷ 2X35 ÷ 7x47 + 2X56 ÷ 2X57 ÷ 2.5x68 + 2.2x78, 

X14--X21 = 10, X21 ÷ X23 ÷ X26 = 20, X34 ÷ X35--X23 = 0, X47--XI4--X34 =- -5 ,  

X56 ÷ X57 -- X35 = 0, X68--X56--X26 =0,X78 --X47 --X57 = - -  15, --X68 --X78 = -  10, 

x21 ~< 11-2c~, ~ ~<x23 ~< 13-4~,x26 ~< 11-2~, 2~ ~<xl4 ~< 16-~,  

x34 ~<9.5-4.5~, x35 ~< 12-27,2~<x47 ~< 14.5-4.5c~, x56 ~<22-27, 

x57 ~< 17-2c~, ~<x68 ~< 12-2~,x78 ~< 16.5-1.5~, 

¢[0, 1] and all xii are positive integers. 

With the cut-off value 7 = 0.5, the above problem becomes a mixed integer problem which was solved by the 
LINGO mixed-integer code. Notice that the original two objective function spaces were added to the constraint 
set of  the auxiliary problem. The optimal values are x26 = 9, x14 = 10, x35 = 11, x47 = 5, x56 = 1,x57 = 10, 
x6s = 10, x23 = 11, and x34 = x78 = x21 = 0 ,  with f l  =269.75 and f 2 =  176.75. The solution is a compromise 
between the minimum cost and the minimum time. We also solved this multi-objective problem with the dis- 
tance parameter, p = 2 .  The optimum values are X26 = 9, XI4 ~-- 10, X34 = 3, X35 = 8, X47 = 8,X56 = 1, X57 = 7, 
x68~-10, x23=11, and x21 = x78=0, with f l  =255.5 and f 2 = 1 9 1 . 3 .  Both solutions are located at the 
non-dominated boundary. 

4. Fuzzy multiple level MCF problem 

For more practical applications, let us consider a decentralized planning problem in which multiple agents 
with some interactions participate in the decision making process. The agents are located in a multiple level 
or hierarchy structure. Based on the work of  Shih, et al. [19], a multi-level MCF problem can be represented 
as 

Min/Max f l ( x ) =  Z C]/Xij, (lst  level) (11) 
(i,j)cA 

where . . 2  . . 3  . .  K x/J, ~/J '"" ,~0' and solve 

Min/Max f 2 ( x ) =  2"r (2nd level) Cij Xz~i, 
(i,j)CA 
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K and solve .-. where x~/,... ,x~j 

M/n/Max f k ( x ) =  Z %KTxij' (Kth level) 
(i,j)EA 

s.t. Z x / j -  ~_~ xji=b(i),  ViEN, lij<~xi/<~ uij, 

{j :  (i,j)cA} { j :  (j,i)EA} 

V(i,j) E A. 

V(i,j) E A,xii >~ 0 and integer, 

where xi j=x 2. +x~ +x  3 + . . .  +x~.; i= 1 . . . . .  m ; j=  1 . . . . .  n; and k =  1, . . . ,K.  Notice that there is only one 
objective which is either minimization or maximization at any one decision level. 

The multi-level programming problem is a very difficult problem to solve and it has been proved to be 
an NP-hard problem. However, this problem has been solved under fuzzy assumptions [19]. This procedure 
is based on the concepts of tolerance membership functions. First, the upper-level decision maker defines his 
or her objectives with some tolerances which are described by fuzzy membership functions. The lower level 
decision maker makes his or her decision based on this tolerance. For the minimization MCF problem, the 
goal can be modified as 

1, if f l ( x ) < f l l ,  

p f l ( f l ( x ) ) =  [ f lu  _ f l ( x ) ] / [ f l U  _ fit],  i f f  l '<~fl(x)<~flU, (12) 

0, if f l (  ) j.x->~lU 

where f l ,  and flU are the acceptable range for the goal for the upper-level decision maker. 
The upper level decision maker also sets the acceptable tolerances for his or her decisions: 

u <~xg~<~x~, [x~i - (x~ - pij)]/Pij, if xij - pij j ~j 

I~xij(xij)= [(x~ + pij) -xij)]/pij,  if x~ <xij<~x~ + p!j, (13) 

0, otherwise, 

where pij is the two-sided tolerance for the decision variable xij. The decision variables for the upper-level 
decision maker will be represented by x)j, Vi and j .  

These fuzzy informations then restrict the feasible space for the lower-level decision maker. For each 
possible solution available to the upper-level decision maker, the lower-level decision maker defines his or 
her goal as 

2 X ~ 2, 1, if f (  ) f ,  

2 X ~ 2L,  #f2( f2 (x ) )=  [ f2L_ f2(x)] / [ f2L_fZ ,] ,  if f2 ,<~f  ( ) f (14) 

2 X ~ 2L 0, if f (  ) f , 

where f2, and f2L are the acceptable range for the goal for the lower-level decision maker. 
To formulate the fuzzy multi-level MCF problem, we must consider two different fuzzy aspects: the impre- 

cise parameters which will be handled by the possibility concept and the fuzzy aspects due to the multi-level 
structure which will be handled by multi-level formation due to Shih et al. [19]. To simplify the discussion, we 
shall consider a fuzzy bi-level MCF problem. Using the possibility approach and trapezoidal fuzzy numbers, 
the imprecisions in the parameters can be handled by the following representation: 

M/n/Max fl(x!, x2.~ (15) J \ 1.] ~ lJ ." 
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where x$ solves 

MinIMax 

s.t. 

i j i j 

( 7, x c&j G f ’ < 71 x CEdxij, and 0: > CI, for maximization 
i j i j 

y x C$xij 6 f 2 d )-I x C$Xij, and 6: > a, Vi and j, 
i j i j 

( 
x x G&j d f 2 < x x c$xij, and 9; 3 CC, for 

i j i j 

a E [O, 11, xij > 0 and integer, 

where Xij=Xb+Xi.; i= l,...,m; and j=l,...,n. The two objectives are 

f’ = x xcIt,“xi + cyTx$ Vi and j 

and 

f 2 = r x c~~x,!&!~x& Qi and j. 

For the second fuzzy aspect, using Eqs. (12)-( 14) we can reformulate Eq. (15) as 

Min/Max f ‘(xi,xi.) 

s.t. (f’(X”)- f’)/(f’(x’)- f”)>P 
‘J lJ Y > 

[Xi - (Xh! - pij)]/pij >A.;, [(Xi:” + pij) - X$]/pij >A;, b’i and j 

(f 2(x’) - f 2)/( f 2(x?) - 
lJ IJ 

f 2’) > A3 N 3 

((f2 - f2’)/(f2(xL:) - f2’)3A3, for maximization) 

a(lij2 - lijl) + I,, dxij d~ij4 - a(Uij2 - uijl), Vi and j, 

y x c;lXij < f1 d y x C;,zxij, and 0; > CI, Vi and j, 
i j i j 

(16) 

~~C~Ixij<f2< CCC&xij, and #>cc, Qi and j, 
.i i j 
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/ ~ i  T ~ 2 ) Z Cij 3Xij "< f ~ Z Z Cij and 02 >/~, for maximization 
j i j 

2',22.,,~3,c~,01,02e[0,1], Vi and j,  

1 2 (02, 0 2 E [0, 1] for maximization) 

xq >~ 0 and integers, 

171 

Eq. (16) can be transformed into 

Max 

s.t. 

2 

( f ' ( x ~ )  -- f l  ) / ( f l (x~j  ) _ fl ,)~>2 ' 

[x]j -- (x)j U - Pij )]/Pij >~ )~, [(x]j u + Pij ) -- x)jl/Pij >~ 2, Vi and j 

(f2(x ~ ) _ f2)/(f2(xi~) _ f2,)  ~> 2, 

( ( f2  2t 2 + 
- f ) / ( f  (xij)  - f 2 ' ) > 2 ,  for maximization) 

~( I~i2 - lij~ ) + li~ <~ xij <~ uij4 - ~(u~j2 - Uijl ), Vi and j,  

Z Z 41x j Z Z 42xi,, and Vi and S, 
i j i j 

l w O   ,form ximization) Cij 3Xij <'~ f ~ Z Z Cij 4Xij' and 
i j 

Z Z c~ lxij <~ f 2  <~ Z Z cr2xq' and O~ ) ~ ,  Vi and j ,  
i / i j 

( Z Z c T 3 x i j ~ - ~ f 2 ~ Z Z  Tcij4xij, and 02~> :~, for maximization) 
,, i / i j 

2, ~, 0 I, 0~ E [0, 1], Vi and j,  

(0 l, 0 2 c [0, 1 ] for maximization) 

x~j >>. 0 and integers. 

Obviously, the approach can be extended to solve problems which have more than two levels 

(17) 

where xi /= x]j+x 2. The variables x]j and x 2 are the decision variable sets for the upper-level and lower- 
level decision makers, respectively, pij is the two-sided tolerance for the decision variable xij. The two level 

12T 2 f2  22T 2 objectives are f l =  ~c]jlTx]j q_Cij Xi j and = ~-~c2.1Tx~j-l-cij xij , with i = 1  . . . . .  m, j =  l . . . . .  n. 
For the minimization of the total degree of satisfaction, i.e. 2 = min{2~/, 2 2, 2 3 }, Vi = 1 . . . . .  m, j = 1 . . . . .  n, 
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Example 3. A bi-level fuzzy MCF problem 
Using the same data as that used in Example 2 and Table 2, a two level decision making problem was 

solved. The two objectives used in Example 2 are treated as in two levels. The problem is to minimize the 
total cost f l  for the upper level decision maker and to minimize the passing time f2 for the lower level 
decision maker within the tolerance of the upper level. Based on the information listed in Table 3, the fuzzy 
range for each objective can be established as: f l  C [236.5,409.75] and f 2 E  [176.6,293.25]. The two control 
variables, x14 and x35, are assumed to be within the control of the upper level decision maker. The value of 
the first decision, Xl4, is around 10 with negative and positive side tolerances 6 and 5, respectively, and the 
value of the second, x35, is around 4 with negative and positive side tolerances 4 and 7, respectively. Thus, 
additional constraints needed for the two level problem are: 

XI4 -- 4~>6214, 15 -- X14 ~5/~14 , 

x35/> 42~5, 11 - x35 ~> 72~5. 

Furthermore, the objective ranges of the two decision makers are 

and 

409.75 - f l  >~ 173.2522, 

293.25 - f2/> 116.6523. 

Substituting the above equations in Eq. (17) with 2 = min{214, 2~5, 22, )~3 }, we obtain the following crisp mixed 
integer problem: 

Max 2 

s.t. 15 - -  X14 ~ 5 , ~ , X 1 4  -4 />62 ,  

11 - x35 >t- 72, x35 >~ 42, 

409.75 - f l  ~> 173.252, 

239.25 - f2 >/173.252, 

( f l  _ 0.5X21 -- 5x26 -- 1.5X14 -- 0.5X34 -- 3X35 -- 4X47 -- 1.5x56 -- 6X57 -- 7x68 -- 8X78)/ 

(0.5X21 4- x26 4- 0.5X14 4- 0.5x34 + X35 4- x47 4- x68 4- X78) ~0~, 

0.5x21 4- 5X26 + 1.5X14 -']- 0.5X34 + 3X35 q- 4x47 4- 1.5X56 q- 6x57 + 7X68 + 8X78 ~<f l ,  

f l  <<.x2x + 6x26 + 2x14 4- x34 4- 4x35 + 5x47 4- 2x56 4- 7x57 + 8x68 q- 9x78, 

( f 2  _ 2x21 _ x23 _ 5x26 _ 2x14 _ 1.2x34 - 1.5x35 - 6x47 - x56 - x57 - 2x68 - 

2x78)/(x23 4-x26 4- 0.8x34 4- 0.5x35 --~- x47 4-x56 + 0.5x68 4- 0 . 2 x 7 8 ) ~ ,  

2x21 4- x23 + 5x26 4- 2x14 4- 1.2x34 + 1.5x35 4- 6x47 4-x56 4- x57 4- 2x68 4- 2x78 ~<f2, 

f2  ~<2x21 4- 2x23 4- 6x26 4- 2x14 4- 2x34 4- 2x35 4- 7x47 4- 2x56 4- 2x57 -~- 2.5x68 4- 2.2x78, 
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x14 -- x21 = 10,x21 -{- x23 + x26 = 20,X34 -]- x35 -- x23 = 0,x47 -- x14 -- x34 = -- 5, 

X 5 6  -{- X 5 7  - -  X 3 5  = 0 , X 6 8  - -  X 5 6  - -  X 2 6  = 0 , X 7 8  - -  X 4 7  - -  X 5 7  = - -  15, - - X 6 8  - -  X 7 8  = - -  10, 

xzi ~< 11 -2c~, ~<x23 ~< 13 -- 4~,x26 ~< 11 -2c~, 

2~ ~<xi4 <~ 16 - c~,x34 ~<9.5 - 4.5~, x3s <~ 12 - 2~, 

27~<x47~<14.5-4.5~, xs6<~22-2~,x57<~17-2c~, o~<~x68<<.12--2o~,x78<~16.5- 1.5~, .~ 

and ~ ~ [0,1], and all x~/ are positive integers. 

Assuming the decision maker provided a cut-off value of 0.5, the above mixed integer problem was solved. The 
optimal degree of satisfaction is 0.429 with the optimal values for the objectives f l =  260.5 and f 2 =  187.2. 
The optimal flows are: X I 4  = 10, x3s = 8, X 2 6  ~ 1 0 ,  X 3 4  ~ 2, X 4 7  ~ 7, X 5 7  ~ 8 ,  X 6 8  = 10, X 2 3  = 10, and x21 z X 5 6  = 

x78 = 0. This solution satisfies the upper level first and then, within the specified tolerance decided by the 
upper level, optimizes the decision of the second level. Thus, the solution should meet the requirements in 
the multiple level hierarchy structure. 

5. Compensatory fuzzy multi-level MCF problem 

Although the above max-min approach is most frequently used, it is not compensatory. The decisions of  
managements are usually compensatory. To overcome this problem, Zimmermann and Zysno [22] proposed a 
compensatory and operator, which is a combination of the product and the algebraic sum with the parameter 
7- The aggregated membership function, /to, by the aggregation of m elements are 

u }' /to = /ti 1 -  ( 1 - / t i )  , 0-..<#-..<1, 0~<7~<1, (18) 

where i = 1,2 . . . . .  m, and 7 is defined as the grade of compensation. 
Since this y-model for the aggregation of different objectives will result in high non-linearity which cannot 

be solved easily, Luhandjula [14] suggested the following rain-bounded sum operator by the use of  convex 
combination: 

/ t o = T m i n i ( / t i ) + ( 1 - 7 ) m i n ( 1 , ~ / t i ) ,  0<~/t~<l, 0~<7~<1, (19) 

where i = 1, 2 . . . . .  m, and m = number of  different elements to be aggregated. 
Recently, Werners [20] proposed the following "fuzzy and" and "fuzzy or" operators which appear to have 

good results compared to the empirical data of  Zimmermann and Zysno [23]: 

/tand=ymiin(/ti)q-(1--y)(5-~./ti~/m , 0-..</t ~.< 1, 0~<7~<1, (20) 
V-711 

Again, i = 1,2, . . . ,  m, and m = number of elements to be aggregated. These two aggregators result in linear 
equations. The "fuzzy and" operator is similar to the two-phase approach of Lee and Li [11] which considers 
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an average operator for compensation at the second phase. A problem in fuzzy multiple level decision making 
with Werners' "fuzzy and" compensatory operator was solved in the following: 

Example 4. Fuzzy multi-level MCF problem with compensatory operator 
The bi-level fuzzy MCF problem which was solved in Example 3 was solved again with the compensatory 

3. The crisp numerical problem can be operator. The data used are the same as that used in Example 
represented by 

Max ]2and = 2 --}- (1--'~)(214 -'}- 2~5 -t-22 +23)/4, 

s.t. 15--X14/> 5(2 q-2114), X14--4 ~ 6(,~ -4-/~14), 

11-x35 >~7(2 + 2~5 ), x35 ~>4(2 + 2~5 ), 

409 .75 - f  ~ ~> 173.25(2 + 22) ,239.25-f  2/> 116.65(2 + 23), 

( f l -  0.5x21 --5X26 -- 1.5Xlz--O.5x34--3X35 --4X47-- 1.5X56--6X57 --7X68 --8X78 )/(0.5X21 -t- X26 

"~-0.5X14 -'~ 0.5X34 "~ x35 -'~ x47 q-X68 -~-X78)~ ,  

0.5X21-1-5X26-[- 1.5XI4+O.5x34+3X35 q- 4X47+ 1.5x56 a t- 6x57 + 7x68 + 8x78 ~< f l ,  

f l  ~<x21 + 6x26 + 2X14 -~- X34 -'}- 4X35 + 5X47 q- 2X56 q- 7X57 + 8X68 + 9X78, 

(f2_2X21_X23_5X26_2X14_ 1.2X34-- 1.5X35--6X47--X56--X57--2X68--2X78) 

/(X23 -'}- X26 -~- 0.8X34 )-~-0.5X35-~-X47-I-X56~-O.Sx68-~- 0.2X78 ) ~ ~, 

2X21 +X23 + 5X26 + 2X14 + 1.2X34+ 1.5X35 + 6X47 +X56 +X57 -F-2X68 -~-2X78 ~<f2, 

f2  ~<2x21 + 2x23 + 6x26 q-- 2xi4 -]- 2x34 -~- 2x35 -~- 7x47 + 2x56 + 2x57 + 2.5x68 + 2.2x78, 

x14 - x21 : 10, x21 q- x23 q- x26 : 20,x34 + x35-x23 : 0, x47-x14-x34 : -5 ,x56 --~ x57-x35 : 0, 

x68-x56-x26 = 0, XTS-X47-x57 = - 15, -x68-X7s = - 10, 

x21 ~< 11-2c~, e ~<x23 ~< 13-4~, x26 ~< 11-2~, 2c~ ~<xl4 ~< 16-~, X34 ~ 9.5--4.5~, 

X35 ~< 12--2e, 2e ~X47 ~ 14.5--4.5e, X56 ~<22--27, XS7 ~< 17--2~, ~ ~<X68 ~< 12--2C~, X78 ~< 16.5-- 1.5C~, 

214, 2~5, 22, 23, 2 and e E [0, 1], and allxij are positive integers. 

The numerical values obtained for the compromise solution are: f*  = ( f l . , f 2 , ) =  (255.75, 192.05),x14 = 10, 
X35 = 7,X26 = 10, X34 : 3, X47 : 8, X57 ---~ 7, X68 = 10, X23 = 10, X21 =X56 =X78 = 0 with the total degree of satis- 
faction ]~and : 0.560 for a compensatory parameter value of 7 = 0.5 and a fixed cut-off value a = 0.5. To study 
the effect of compensation, we solved the problem with 11 different parameter values for 7 with ~ = 0.5. The 
results are summarized in Table 4. 

6. Discussions 

The concept of fuzzy tolerance, which is similiar to subjective possibility, and trapezoidal fuzzy numbers 
are used to handle the vagueness in the parameters of the MCF problem. In this way the crisp or auxiliary 
problem has at most 2m capacity constraints instead of the 3m constraints resulted in original approach of 
Negi [16]. The formulation is extended to fuzzy multiple objective problems and fuzzy multiple level systems 
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Table 4 
"fuzzy and" operation, Example 4 

Compensatory Degree of satisfaction Objective Note 
parameter i' #rood 2 (original) (fr, f2) 

0 0.813 0.280 (241.5, 206.6) flow A 
0.1 0.759 0.280 (241.5, 206.6) 
0.2 0.706 0.280 (241.5, 206.6) 
0.3 0.653 0.280 (241.5, 206.6) 
0.4 0.600 0.280 (241.5, 206.6) 
0.5 0.560 0.405 (255.75, 192.05) flow B 
0.6 0.531 0.429 (260.5, 187.2) flow C 
0.7 0.505 0.429 (260.5, 187.2) 
0.8 0.480 0.429 (260.5, 187.2) 
0.9 0.454 0.429 (260.5, 187.2) 
1 0.429 0.429 (260.5, 187.2) 

Flow sequences: (X21,X23,X26,XI4,X34,X35,X47,X56,X57,X68,X7s). The 
flow A: (0, 10, 10, 10,6,4, 11,0,4, 10,0), 
flow B: (0, 10, 10, 10,3,7,8,0,7,10,0), 
flow C: (0,10,10,10,2,8,7,0,8,10,0). 

numerical values are: 

which involves decentralized planning with interactions. These formulations and extensions should be very 
useful for attacking practical network problems. 

Both the possibilistic approach and Zimmermann's  preference-based model are used to solve the fuzzy 
multi-level MCF problem. The possibilistic approach is used for the modeling the parameter imprecision 
and the preference-based model is used for simplifying the multi-level structure. The concept o f  imprecise 
structure, due to Chanas et al. [8], appears to be a another useful approach for multi-level network problems. 

The proposed approach can handle network problems in the fuzzy domain with the resulting problem being 
mixed-integer or nonlinear problem. One advantage o f  the approach is that the whole solution procedure is 
independent o f  the structure o f  the system. For example, we can use a nonlinear code to solve the resulting 
nonlinear programming problem instead of  some complicated searching procedure to search the network. 

All the examples in this paper are solved by the LINGO mix-integer code. However, this code may be 
inefficient for handling large scale problems. Many of  the special codes can only handle all integer problems 
and they are not suited for mixed integer problem resulting from the MCF problem. Although we can process 
the non-integer variables by scaling, e.g., multiply all values by 1000 to make the variables integers [10], the 
approach is not a good method for handle fuzzy problems. 
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